Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

Adjoints and inner products

Dual vector spaces

Definition

Let VV be a vector space over C\CC. the dual vector space VV^* is the space of all linear maps f:VCf:V \to \CC.

Properties and notation

  1. VV^* is a vector space.

Consider linear maps f1,2f_{1,2}, and a,bCa,b \in \CC. Then we can define a linear map af1+bf2a f_1 + b f_2 by their action on a vector v\ket{v}.

(af1+bf2)(v)=af1(v)+bf2(v)(a f_1 + b f_2)(\ket{v}) = a f_1(\ket{v}) + b f_2(\ket{v})

One can show that this defines a linear map: for any c,dCc,d\in \CC and v1,2V\ket{v_{1,2}} \in V,

(af1+bf2)(cv1+dv2)=c(af1+bf2)v1+d(af1+bf2)(v2)(a f_1 + b f_2)(c \ket{v_1} + d \ket{v_2}) = c (a f_1 + b f_2)\ket{v_1} + d (a f_1 + b f_2)(\ket{v_2})

which follows from f1,2f_{1,2} being linear maps.

  1. dim(V)=dim(V)\text{dim}(V^*) = \text{dim}(V). It is instructive to show this. Consider a basis i\ket{i} of VV, i=1,d=dim(V)i = 1,\ldots d = \text{dim}(V). A general vector v\ket{v} can be expressed as

v=i=1dcii\ket{v} = \sum_{i = 1}^d c_i \ket{i}

for a unique set of coefficients ciCc_i \in \CC. Now

f(v)=i=1dcif(i)f(\ket{v}) = \sum_{i = 1}^d c_i f(\ket{i})

Thus, the map ff is completely specified by dd complex numbers f(i)=ciCf(\ket{i}) = c_i \in \CC. Thus, if we define fif_i by fi(j)=δijf_i(\ket{j}) = \delta_{ij}, we can show that each fif_i is a linear map. Furthermore, fif_i is linearly independent of fjif_{j \neq i} (you should convince yourself of this).

Any function ff can always be written as f=i=1dcifif = \sum_{i = 1}^d c_i f_i, so this basis is maximal, and fif_i form a complete basis for VV^*. There are dd such independent basis functions, so dim(V)=d\text{dim}(V^*) = d.

  1. Notation. We can express fVf \in V^* as a “bra vector” f\bra{f}. We then call elements vV\ket{v} \in V “ket vectors”. We can then write

fvf(v)\brket{f}{v} \equiv f(\ket{v})

as a “bra(c)ket”. I didn’t do this, please blame Dirac. Anyhow the notation is unfortunately standard. With this notation we can define the linear structure of VV^* as

af1+bf2=af1+bf2\bra{a f_1 + b f_2} = a \bra{f_1} + b \bra{f_2}
  1. Finally, The dual vector space for VV^* is VV, or (V)=V(V^*)^* = V: for any v\ket{v} the map from VCV^* \to \CC is just v:ffv\ket{v}: f \to \brket{f}{v}.

Example

If V=C3V = \CC^3 is represented as the space of column vectors. we can represent VV^* as the set of row vectors. That is, consider a basis

1=(100) ;2=(010) ;3=(001)\ket{1} = \begin{pmatrix}1 \\ 0 \\ 0 \end{pmatrix}\ ; \ket{2} = \begin{pmatrix}0 \\ 1 \\ 0 \end{pmatrix}\ ; \ket{3} = \begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix}

We can define any linear map ff by f(i=cif(\ket{i} = c_i. Then if v=iaii\ket{v} = \sum_i a_i \ket{i},

f(v)=iciai=(c1c2c3)(a1a2a3)f(\ket{v}) = \sum_i c_i a_i = \begin{pmatrix} c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}

Adjoint maps

Since dimV=dimV\dim V = \dim V^*, we expect that there is an isomorphism (a map that is one-to-one and onto) between them. Choosing such a map leads to a choice of “inner product” on VV itself: a way of assigning to v\ket{v} a number corresponding to some notion of its length.

Definition

Let VV be a vector space over C\CC. An adjoint map is a map A:VV\cal{A}: V \to V^*, which we denote by AvfvA\ket{v} \equiv \bra{f_v} with the properties

  1. Skew symmetry: fwv=fvw\brket{f_w}{v} = \brket{f_v}{w}^*.

  2. Positive semi-definiteness:

fvvv20 ;v=0 iff v=0\brket{f_v}{v} \equiv ||v||^2 \geq 0\ ; ||v|| = 0\ \text{iff}\ \ket{v} = 0

In general we write fv=v\bra{f_v} = \bra{v}.

Properties

  1. Antilinearity. Using skew-symmetry you can show that for v1,2V\ket{v_{1,2}} \in V, a,bCa, b \in \CC,

av1+bv2=av1+bv2\bra{a v_1 + b v_2} = a^* \bra{v_1} + b^* \bra{v_2}
  1. Schwarz inequality

vwv w|\brket{v}{w}| \leq ||v||\ ||w||
  1. Triangle inequality

u+vu+v||u + v|| \neq ||u| + ||v||

Examples

  1. V=C3V = \CC^3.

A(c1c2c3)=(c1c2c2)A\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} c_1^* & c_2^* & c_2^* \end{pmatrix}

If

v=(c1c2c3) ,w=(d1d2d3)\ket{v} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}\ , \ket{w} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix}

then

vw=c1d1+c2d2+c3d3\brket{v}{w} = c_1^* d_1 + c_2^* d_2 + c_3^* d_3
  1. V=M2(C)V = M_2(\CC).

M1M2=tr((M1)TM2)=i,j(M1)ij(M2)ij\brket{M_1}{M_2} = \text{tr} \left((M_1^{*})^T M_2\right) = \sum_{i,j} (M_1)^*_{ij} (M_2)_{ij}
  1. V=L2(R)V = L^2(\CR), the space of complex square-integrable functions on the real line where ψ\ket{\psi} is represented by the function ψ(x)\psi(x). A good inner product, which defines an adjoint map, is

χψ=dxχ(x)ψ(x)\brket{\chi}{\psi} = \int_{-\infty}^{\infty} dx \chi(x)^* \psi(x)

Additional definitions and a comment

  1. vw\brket{v}{w} is the inner product of v\ket{v}, w\ket{w}.

  2. v2=vv||v||^2 = \brket{v}{v} is called the norm of v\ket{v}.

  3. VV with an adjoint map is called an inner product space.

  4. An inner product space (over C\CC) is called a Hilbert space if either:

To explain the last possibility, note that vi\ket{v_i}, i=1,,i = 1,\ldots,\infty is a Cauchy sequence if for any ϵ>0\eps > 0, there exists some integer NN such that

vnvm<ϵ  n,mN|| v_n - v_m || < \eps\ \forall\ n, m \geq N

Such a sequence is complete if it converges to a vector in VV.

  1. There is no unique adjoint map.

Actions of operators

Given a linear operator AA and vV\ket{v} \in V, AvA\ket{v} is a vector and wAv\bra{w} A \ket{v} is a complex number. We can therefore define AwwA\bra{A w} \equiv \bra{w} A such that Awv=wAv\brket{A w}{v} = \bra{w} A \ket{v}.

Orthonormal bases

Definitions

Let VV be a vector space over C\CC.

  1. vV\ket{v} \in V is a normal vector if v2=vv=1||v||^2 = \brket{v}{v} = 1.

  2. v,wV\ket{v},\ket{w} \in V are orthogonal if vw=0\brket{v}{w} = 0.

  3. An orthonormal basis is a basis iV\ket{i} \in V, i=1,,d=dimVi = 1,\ldots,d = \text{dim} V such that for A:ii,ij=δij\cal{A}: \ket{i} \to \bra{i}, \brket{i}{j} = \delta_{ij}.

Examples

  1. We can write v=ivii\ket{v} = \sum_i v_i \ket{i}; the antilienarity of the adjoint map means that v=iivi\bra{v} = \sum_i \bra{i} v^*_i. This means that

vv=i,jviijvj=ivi2\brket{v}{v} = \sum_{i,j} v^*_i \brket{i}{j} v_j = \sum_i |v_i|^2

Similarly, for w=iwii\ket{w} = \sum_i w_i \ket{i},

wv=iwivi\brket{w}{v} = \sum_i w^*_i v_i

This works if we identify

v(v1v2vn)\ket{v} \to \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}

and thus

v(v1v2vn)\bra{v} \to \begin{pmatrix} v_1^* & v_2^* & \ldots & v_n^* \end{pmatrix}

The basis element i\ket{i} is a column vector with all zeros except a 1 in the iith row.

  1. If V=M2(C)V = M_2(\CC), the space of 2×22\times 2 complex matrices, a natural inner product is

mn=tr(mT)n\brket{m}{n} = \text{tr} (m^T)^* n

where m,nm,n are 2×22\times 2 matrices. This clearly defines an adjoint map from n\ket{n} to a linear map. An orthonormal basis is:

1(1000) ;  2(0100) ;  3(0010) ;  4(0001)\ket{1} \to \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ ; \ \ \ket{2} \to \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\ ; \ \ \ket{3} \to \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\ ; \ \ \ket{4} \to \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}
  1. Consider the vector space of complex functions on the interval 0,L0,L with Dirichlet boundary condittions. You can convince yourself that the basis

nψn(x)=2LsinnπxL\ket{n} \to \psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L}

is orthonormal with respect to the inner product (17)

The Gram-Schmidt machine

Theorem: every finite-dimensional vector space or infinite dimensional vector space with a countable basis has an orthonormal basis.

Proof (partial): Given a basis v1,v2,,vd\ket{v_1},\ket{v_2},\ldots,\ket{v_d}, we can construct a basis iteratively. Define

1=v1v12=v21v21v221v22k=vkn=0k1nnvkvk2=n=1k1vkn2\begin{align} \ket{1} & = \frac{\ket{v_1}}{||v_1||}\\ \ket{2} & = \frac{\ket{v_2} - \brket{1}{v_2}\ket{1}}{\sqrt{||v_2||^2 - |\brket{1}{v_2}|^2}}\\ \ket{k} & = \frac{\ket{v_k} - \sum_{n = 0}^{k-1} \ket{n}\brket{n}{v_k}}{\sqrt{||v_k||^2 = \sum_{n = 1}^{k-1} |\brket{v_k}{n}|^2}} \end{align}

Matrix elements of operators

Since i\ket{i} is a basis, we can write the action of operators in this basis: Aj=AijiA\ket{j} = A_{ij}\ket{i}. As notation, we will sometimes write

A=iAijjA = \ket{i} A_{ij} \bra{j}

We understand this to mean

Av=i,jiAijjv=i,jAijvjiA\ket{v} = \sum_{i,j} \ket{i} A_{ij} \brket{j}{v} = \sum_{i,j}A_{ij} v_j \ket{i}

where v=ivii\ket{v} = \sum_i v_i \ket{i}, and for dual vectors v=iivi\bra{v} = \sum_i \bra{i} v_i^*,

vA=i,kivkAki\bra{v} A = \sum_{i,k} \bra{i} v^*_k A_{ki}

Thus

vAw=i,jviAijwj\bra{v} A \ket{w} = \sum_{i,j} v^*_i A_{ij} w_j

A particularly important example is the identity operator 1\bf{1} for which 1ij=δij\bf{1}_{ij} = \delta_{ij}. This can be represented as above by:

1=iii{\bf 1} = \sum_i \ket{i}\bra{i}

for any orthonormal basis. This is called a resolution of the identity, associated to a given basis.

In this basis, an important operator on AA is the transpose. That is given a linear operator AA, we can define the transpose ATA^T via its matrix elements

(AT)ij=Aji(A^T)_{ij} = A_{ji}

In particular, we can write

vA=ivkAki=i(AT)ikvk\bra{v}A = \bra{i} v^*_k A_{ki} = \bra{i} (A^T)_{ik} v^*_k

Adjoints of operators

The vector AvAv=AlkvklA\ket{v} \equiv \ket{Av} = A_{lk} v_k \ket{l} has a natural adjoint

A:AvlvkAlk=lvk(AT)klvA{\cal A} : A\ket{v} \to \bra{l} v_k^* A_{lk}^* = \bra{l} v_k^* (A^T)^*_{kl} \equiv \bra{v} A^{\dagger}

which defines the Hermitian conjugate AA^{\dagger}. We can either define it as A:AvaA{\cal A}: A\ket{v} \to \bra{a} A^{\dagger} or via its matrix elements in an orthonormal basis,

Aij=(AT)ij=AjiA^{\dagger}_{ij} = (A^T)^*_{ij} = A^*_{ji}

Hermitian and unitary operators

  1. Definition. A Hermitian operator is an operator A=AA = A^{\dagger}.

Note that this does not mean the operator has real matrix elements. The following operator on C2\CC^2 is Hermitian:

σy=(0ii0)\sigma_y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}
  1. Definition. A Unitary operator is an operator UU such that U=U1U^{\dagger} = U^{-1}.

An important property of this operator is that it is norm-preserving:

Uv2=vUUv=vU1Uv=vv=v2|| U\ket{v}||^2 = \bra{v} U^{\dagger} U \ket{v} = \bra{v} U^{-1} U \ket{v} = \brket{v}{v} = ||v||^2
  1. An example of a unitary operator acting on C2\CC^2:

U=(cosθsinθeiϕsinθeiϕcosθ)U = \begin{pmatrix} \cos\theta & \sin\theta e^{i\phi} \\ - \sin\theta e^{-i\phi} & \cos\theta \end{pmatrix}

As we will discuss, this implements rotations on the spin components of a spin-12\half system.

  1. Two nontrivial Hermitian examples for L2(R)L^2(\CR):

χx^ketψ=dxχ(xψ(x))=dx(xχ)ψ=χxψ=xχψ\begin{align} \bra{\chi} \hat{x} ket{\psi} & = \int dx \chi^* (x \psi(x)) = \int dx (x\chi)^* \psi \\ & = \brket{\chi}{x\psi} = \brket{x\chi}{\psi} \end{align}

as expected for a Hermitian operator.

χp^ψ=χ(i)ψx=(i)dxx(χψ)+idxχxψ=iχψ+dx(iχx)ψ=χp^ψ\begin{align} \bra{\chi} {\hat p}\ket{\psi} & = \int_{-\infty}^{\infty} \chi^* (-i\hbar) \frac{\del \psi}{\del x}\\ & = (-i \hbar) \int_{-\infty}^{\infty} dx \frac{\del}{\del x} (\chi^* \psi) + i \hbar \int dx \frac{\del \chi^*}{\del x} \psi \\ & = - i \hbar \chi^* \psi \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} dx\left(-i\hbar \frac{\del \chi}{\del x}\right)^*\psi\\ & = \bra{\chi}{\hat p}^{\dagger} \ket{\psi} \end{align}

The second line follows from integration by parts, and the boundary terms vanish because ψ\psi is square integrable. In other words for every ψ,χ\ket{\psi},\ket{\chi}, χp^ψ=χp^ψ\bra{\chi} {\hat p} \ket{\psi} = \bra{\chi} {\hat p}^{\dagger} \ket{\psi}. From this we can deduce that p^=p^{\hat p} = {\hat p}^{\dagger}.

The same argument follows for the case of complex functions with periodic boundary conditions. For Dirichlet boundary conditions, p^{\hat p} fails to be an operator on teh Hilbert space, as the derivative of a function with Dirichlet boundary conditions does not in general satisfy Dirichlet boundary conditions. (Similarly for Neumann boundary conditions).