Adjoints and inner products
Dual vector spaces ¶ Definition ¶ Let V V V be a vector space over C \CC C . the dual vector space V ∗ V^* V ∗ is the space of all linear maps f : V → C f:V \to \CC f : V → C .
Properties and notation ¶ V ∗ V^* V ∗ is a vector space.
Consider linear maps f 1 , 2 f_{1,2} f 1 , 2 , and a , b ∈ C a,b \in \CC a , b ∈ C . Then we can define a linear map a f 1 + b f 2 a f_1 + b f_2 a f 1 + b f 2 by their action on a vector ∣ v ⟩ \ket{v} ∣ v ⟩ .
( a f 1 + b f 2 ) ( ∣ v ⟩ ) = a f 1 ( ∣ v ⟩ ) + b f 2 ( ∣ v ⟩ ) (a f_1 + b f_2)(\ket{v}) = a f_1(\ket{v}) + b f_2(\ket{v}) ( a f 1 + b f 2 ) ( ∣ v ⟩) = a f 1 ( ∣ v ⟩) + b f 2 ( ∣ v ⟩) One can show that this defines a linear map: for any c , d ∈ C c,d\in \CC c , d ∈ C and ∣ v 1 , 2 ⟩ ∈ V \ket{v_{1,2}} \in V ∣ v 1 , 2 ⟩ ∈ V ,
( a f 1 + b f 2 ) ( c ∣ v 1 ⟩ + d ∣ v 2 ⟩ ) = c ( a f 1 + b f 2 ) ∣ v 1 ⟩ + d ( a f 1 + b f 2 ) ( ∣ v 2 ⟩ ) (a f_1 + b f_2)(c \ket{v_1} + d \ket{v_2}) = c (a f_1 + b f_2)\ket{v_1} + d (a f_1 + b f_2)(\ket{v_2}) ( a f 1 + b f 2 ) ( c ∣ v 1 ⟩ + d ∣ v 2 ⟩) = c ( a f 1 + b f 2 ) ∣ v 1 ⟩ + d ( a f 1 + b f 2 ) ( ∣ v 2 ⟩) which follows from f 1 , 2 f_{1,2} f 1 , 2 being linear maps.
dim ( V ∗ ) = dim ( V ) \text{dim}(V^*) = \text{dim}(V) dim ( V ∗ ) = dim ( V ) . It is instructive to show this. Consider a basis ∣ i ⟩ \ket{i} ∣ i ⟩ of V V V , i = 1 , … d = dim ( V ) i = 1,\ldots d = \text{dim}(V) i = 1 , … d = dim ( V ) . A general vector ∣ v ⟩ \ket{v} ∣ v ⟩ can be expressed as
∣ v ⟩ = ∑ i = 1 d c i ∣ i ⟩ \ket{v} = \sum_{i = 1}^d c_i \ket{i} ∣ v ⟩ = i = 1 ∑ d c i ∣ i ⟩ for a unique set of coefficients c i ∈ C c_i \in \CC c i ∈ C . Now
f ( ∣ v ⟩ ) = ∑ i = 1 d c i f ( ∣ i ⟩ ) f(\ket{v}) = \sum_{i = 1}^d c_i f(\ket{i}) f ( ∣ v ⟩) = i = 1 ∑ d c i f ( ∣ i ⟩) Thus, the map f f f is completely specified by d d d complex numbers f ( ∣ i ⟩ ) = c i ∈ C f(\ket{i}) = c_i \in \CC f ( ∣ i ⟩) = c i ∈ C . Thus, if we define f i f_i f i by f i ( ∣ j ⟩ ) = δ i j f_i(\ket{j}) = \delta_{ij} f i ( ∣ j ⟩) = δ ij , we can show that each f i f_i f i is a linear map. Furthermore, f i f_i f i is linearly independent of f j ≠ i f_{j \neq i} f j = i (you should convince yourself of this).
Any function f f f can always be written as f = ∑ i = 1 d c i f i f = \sum_{i = 1}^d c_i f_i f = ∑ i = 1 d c i f i , so this basis is maximal, and f i f_i f i form a complete basis for V ∗ V^* V ∗ . There are d d d such independent basis functions, so dim ( V ∗ ) = d \text{dim}(V^*) = d dim ( V ∗ ) = d .
Notation . We can express f ∈ V ∗ f \in V^* f ∈ V ∗ as a “bra vector” ⟨ f ∣ \bra{f} ⟨ f ∣ . We then call elements ∣ v ⟩ ∈ V \ket{v} \in V ∣ v ⟩ ∈ V “ket vectors”. We can then write
⟨ f ∣ v ⟩ ≡ f ( ∣ v ⟩ ) \brket{f}{v} \equiv f(\ket{v}) ⟨ f ∣ v ⟩ ≡ f ( ∣ v ⟩) as a “bra(c)ket”. I didn’t do this, please blame Dirac. Anyhow the notation is unfortunately standard. With this notation we can define the linear structure of V ∗ V^* V ∗ as
⟨ a f 1 + b f 2 ∣ = a ⟨ f 1 ∣ + b ⟨ f 2 ∣ \bra{a f_1 + b f_2} = a \bra{f_1} + b \bra{f_2} ⟨ a f 1 + b f 2 ∣ = a ⟨ f 1 ∣ + b ⟨ f 2 ∣ Finally, The dual vector space for V ∗ V^* V ∗ is V V V , or ( V ∗ ) ∗ = V (V^*)^* = V ( V ∗ ) ∗ = V : for any ∣ v ⟩ \ket{v} ∣ v ⟩ the map from V ∗ → C V^* \to \CC V ∗ → C is just ∣ v ⟩ : f → ⟨ f ∣ v ⟩ \ket{v}: f \to \brket{f}{v} ∣ v ⟩ : f → ⟨ f ∣ v ⟩ .
Example ¶ If V = C 3 V = \CC^3 V = C 3 is represented as the space of column vectors. we can represent V ∗ V^* V ∗ as the set of row vectors. That is, consider a basis
∣ 1 ⟩ = ( 1 0 0 ) ; ∣ 2 ⟩ = ( 0 1 0 ) ; ∣ 3 ⟩ = ( 0 0 1 ) \ket{1} = \begin{pmatrix}1 \\ 0 \\ 0 \end{pmatrix}\ ; \ket{2} = \begin{pmatrix}0 \\ 1 \\ 0 \end{pmatrix}\ ; \ket{3} = \begin{pmatrix}0 \\ 0 \\ 1 \end{pmatrix} ∣1 ⟩ = ⎝ ⎛ 1 0 0 ⎠ ⎞ ; ∣2 ⟩ = ⎝ ⎛ 0 1 0 ⎠ ⎞ ; ∣3 ⟩ = ⎝ ⎛ 0 0 1 ⎠ ⎞ We can define any linear map f f f by f ( ∣ i ⟩ = c i f(\ket{i} = c_i f ( ∣ i ⟩ = c i . Then if ∣ v ⟩ = ∑ i a i ∣ i ⟩ \ket{v} = \sum_i a_i \ket{i} ∣ v ⟩ = ∑ i a i ∣ i ⟩ ,
f ( ∣ v ⟩ ) = ∑ i c i a i = ( c 1 c 2 c 3 ) ( a 1 a 2 a 3 ) f(\ket{v}) = \sum_i c_i a_i = \begin{pmatrix} c_1 & c_2 & c_3 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} f ( ∣ v ⟩) = i ∑ c i a i = ( c 1 c 2 c 3 ) ⎝ ⎛ a 1 a 2 a 3 ⎠ ⎞ Adjoint maps ¶ Since dim V = dim V ∗ \dim V = \dim V^* dim V = dim V ∗ , we expect that there is an isomorphism (a map that is one-to-one and onto) between them. Choosing such a map leads to a choice of “inner product” on V V V itself: a way of assigning to ∣ v ⟩ \ket{v} ∣ v ⟩ a number corresponding to some notion of its length.
Definition ¶ Let V V V be a vector space over C \CC C . An adjoint map is a map A : V → V ∗ \cal{A}: V \to V^* A : V → V ∗ , which we denote by A ∣ v ⟩ ≡ ⟨ f v ∣ A\ket{v} \equiv \bra{f_v} A ∣ v ⟩ ≡ ⟨ f v ∣ with the properties
Skew symmetry: ⟨ f w ∣ v ⟩ = ⟨ f v ∣ w ⟩ ∗ \brket{f_w}{v} = \brket{f_v}{w}^* ⟨ f w ∣ v ⟩ = ⟨ f v ∣ w ⟩ ∗ .
Positive semi-definiteness:
⟨ f v ∣ v ⟩ ≡ ∣ ∣ v ∣ ∣ 2 ≥ 0 ; ∣ ∣ v ∣ ∣ = 0 iff ∣ v ⟩ = 0 \brket{f_v}{v} \equiv ||v||^2 \geq 0\ ; ||v|| = 0\ \text{iff}\ \ket{v} = 0 ⟨ f v ∣ v ⟩ ≡ ∣∣ v ∣ ∣ 2 ≥ 0 ; ∣∣ v ∣∣ = 0 iff ∣ v ⟩ = 0 In general we write ⟨ f v ∣ = ⟨ v ∣ \bra{f_v} = \bra{v} ⟨ f v ∣ = ⟨ v ∣ .
Properties ¶ Antilinearity . Using skew-symmetry you can show that for ∣ v 1 , 2 ⟩ ∈ V \ket{v_{1,2}} \in V ∣ v 1 , 2 ⟩ ∈ V , a , b ∈ C a, b \in \CC a , b ∈ C ,
⟨ a v 1 + b v 2 ∣ = a ∗ ⟨ v 1 ∣ + b ∗ ⟨ v 2 ∣ \bra{a v_1 + b v_2} = a^* \bra{v_1} + b^* \bra{v_2} ⟨ a v 1 + b v 2 ∣ = a ∗ ⟨ v 1 ∣ + b ∗ ⟨ v 2 ∣ Schwarz inequality
∣ ⟨ v ∣ w ⟩ ∣ ≤ ∣ ∣ v ∣ ∣ ∣ ∣ w ∣ ∣ |\brket{v}{w}| \leq ||v||\ ||w|| ∣ ⟨ v ∣ w ⟩ ∣ ≤ ∣∣ v ∣∣ ∣∣ w ∣∣ Triangle inequality
∣ ∣ u + v ∣ ∣ ≠ ∣ ∣ u ∣ + ∣ ∣ v ∣ ∣ ||u + v|| \neq ||u| + ||v|| ∣∣ u + v ∣∣ = ∣∣ u ∣ + ∣∣ v ∣∣ Examples ¶ V = C 3 V = \CC^3 V = C 3 .
A ( c 1 c 2 c 3 ) = ( c 1 ∗ c 2 ∗ c 2 ∗ ) A\begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} c_1^* & c_2^* & c_2^* \end{pmatrix} A ⎝ ⎛ c 1 c 2 c 3 ⎠ ⎞ = ( c 1 ∗ c 2 ∗ c 2 ∗ ) If
∣ v ⟩ = ( c 1 c 2 c 3 ) , ∣ w ⟩ = ( d 1 d 2 d 3 ) \ket{v} = \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}\ , \ket{w} = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \end{pmatrix} ∣ v ⟩ = ⎝ ⎛ c 1 c 2 c 3 ⎠ ⎞ , ∣ w ⟩ = ⎝ ⎛ d 1 d 2 d 3 ⎠ ⎞ then
⟨ v ∣ w ⟩ = c 1 ∗ d 1 + c 2 ∗ d 2 + c 3 ∗ d 3 \brket{v}{w} = c_1^* d_1 + c_2^* d_2 + c_3^* d_3 ⟨ v ∣ w ⟩ = c 1 ∗ d 1 + c 2 ∗ d 2 + c 3 ∗ d 3 V = M 2 ( C ) V = M_2(\CC) V = M 2 ( C ) .
⟨ M 1 ∣ M 2 ⟩ = tr ( ( M 1 ∗ ) T M 2 ) = ∑ i , j ( M 1 ) i j ∗ ( M 2 ) i j \brket{M_1}{M_2} = \text{tr} \left((M_1^{*})^T M_2\right) = \sum_{i,j} (M_1)^*_{ij} (M_2)_{ij} ⟨ M 1 ∣ M 2 ⟩ = tr ( ( M 1 ∗ ) T M 2 ) = i , j ∑ ( M 1 ) ij ∗ ( M 2 ) ij V = L 2 ( R ) V = L^2(\CR) V = L 2 ( R ) , the space of complex square-integrable functions on the real line where ∣ ψ ⟩ \ket{\psi} ∣ ψ ⟩ is represented by the function ψ ( x ) \psi(x) ψ ( x ) . A good inner product, which defines an adjoint map, is
⟨ χ ∣ ψ ⟩ = ∫ − ∞ ∞ d x χ ( x ) ∗ ψ ( x ) \brket{\chi}{\psi} = \int_{-\infty}^{\infty} dx \chi(x)^* \psi(x) ⟨ χ ∣ ψ ⟩ = ∫ − ∞ ∞ d x χ ( x ) ∗ ψ ( x ) ⟨ v ∣ w ⟩ \brket{v}{w} ⟨ v ∣ w ⟩ is the inner product of ∣ v ⟩ \ket{v} ∣ v ⟩ , ∣ w ⟩ \ket{w} ∣ w ⟩ .
∣ ∣ v ∣ ∣ 2 = ⟨ v ∣ v ⟩ ||v||^2 = \brket{v}{v} ∣∣ v ∣ ∣ 2 = ⟨ v ∣ v ⟩ is called the norm of ∣ v ⟩ \ket{v} ∣ v ⟩ .
V V V with an adjoint map is called an inner product space .
An inner product space (over C \CC C ) is called a Hilbert space if either:
To explain the last possibility, note that ∣ v i ⟩ \ket{v_i} ∣ v i ⟩ , i = 1 , … , ∞ i = 1,\ldots,\infty i = 1 , … , ∞ is a Cauchy sequence if for any ϵ > 0 \eps > 0 ϵ > 0 , there exists some integer N N N such that
∣ ∣ v n − v m ∣ ∣ < ϵ ∀ n , m ≥ N || v_n - v_m || < \eps\ \forall\ n, m \geq N ∣∣ v n − v m ∣∣ < ϵ ∀ n , m ≥ N Such a sequence is complete if it converges to a vector in V V V .
There is no unique adjoint map.
Actions of operators ¶ Given a linear operator A A A and ∣ v ⟩ ∈ V \ket{v} \in V ∣ v ⟩ ∈ V , A ∣ v ⟩ A\ket{v} A ∣ v ⟩ is a vector and ⟨ w ∣ A ∣ v ⟩ \bra{w} A \ket{v} ⟨ w ∣ A ∣ v ⟩ is a complex number. We can therefore define ⟨ A w ∣ ≡ ⟨ w ∣ A \bra{A w} \equiv \bra{w} A ⟨ A w ∣ ≡ ⟨ w ∣ A such that ⟨ A w ∣ v ⟩ = ⟨ w ∣ A ∣ v ⟩ \brket{A w}{v} = \bra{w} A \ket{v} ⟨ A w ∣ v ⟩ = ⟨ w ∣ A ∣ v ⟩ .
Orthonormal bases ¶ Definitions ¶ Let V V V be a vector space over C \CC C .
∣ v ⟩ ∈ V \ket{v} \in V ∣ v ⟩ ∈ V is a normal vector if ∣ ∣ v ∣ ∣ 2 = ⟨ v ∣ v ⟩ = 1 ||v||^2 = \brket{v}{v} = 1 ∣∣ v ∣ ∣ 2 = ⟨ v ∣ v ⟩ = 1 .
∣ v ⟩ , ∣ w ⟩ ∈ V \ket{v},\ket{w} \in V ∣ v ⟩ , ∣ w ⟩ ∈ V are orthogonal if ⟨ v ∣ w ⟩ = 0 \brket{v}{w} = 0 ⟨ v ∣ w ⟩ = 0 .
An orthonormal basis is a basis ∣ i ⟩ ∈ V \ket{i} \in V ∣ i ⟩ ∈ V , i = 1 , … , d = dim V i = 1,\ldots,d = \text{dim} V i = 1 , … , d = dim V such that for A : ∣ i ⟩ → ⟨ i ∣ , ⟨ i ∣ j ⟩ = δ i j \cal{A}: \ket{i} \to \bra{i}, \brket{i}{j} = \delta_{ij} A : ∣ i ⟩ → ⟨ i ∣ , ⟨ i ∣ j ⟩ = δ ij .
Examples ¶ We can write ∣ v ⟩ = ∑ i v i ∣ i ⟩ \ket{v} = \sum_i v_i \ket{i} ∣ v ⟩ = ∑ i v i ∣ i ⟩ ; the antilienarity of the adjoint map means that ⟨ v ∣ = ∑ i ⟨ i ∣ v i ∗ \bra{v} = \sum_i \bra{i} v^*_i ⟨ v ∣ = ∑ i ⟨ i ∣ v i ∗ . This means that
⟨ v ∣ v ⟩ = ∑ i , j v i ∗ ⟨ i ∣ j ⟩ v j = ∑ i ∣ v i ∣ 2 \brket{v}{v} = \sum_{i,j} v^*_i \brket{i}{j} v_j = \sum_i |v_i|^2 ⟨ v ∣ v ⟩ = i , j ∑ v i ∗ ⟨ i ∣ j ⟩ v j = i ∑ ∣ v i ∣ 2 Similarly, for ∣ w ⟩ = ∑ i w i ∣ i ⟩ \ket{w} = \sum_i w_i \ket{i} ∣ w ⟩ = ∑ i w i ∣ i ⟩ ,
⟨ w ∣ v ⟩ = ∑ i w i ∗ v i \brket{w}{v} = \sum_i w^*_i v_i ⟨ w ∣ v ⟩ = i ∑ w i ∗ v i This works if we identify
∣ v ⟩ → ( v 1 v 2 ⋮ v n ) \ket{v} \to \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} ∣ v ⟩ → ⎝ ⎛ v 1 v 2 ⋮ v n ⎠ ⎞ and thus
⟨ v ∣ → ( v 1 ∗ v 2 ∗ … v n ∗ ) \bra{v} \to \begin{pmatrix} v_1^* & v_2^* & \ldots & v_n^* \end{pmatrix} ⟨ v ∣ → ( v 1 ∗ v 2 ∗ … v n ∗ ) The basis element ∣ i ⟩ \ket{i} ∣ i ⟩ is a column vector with all zeros except a 1 in the i i i th row.
If V = M 2 ( C ) V = M_2(\CC) V = M 2 ( C ) , the space of 2 × 2 2\times 2 2 × 2 complex matrices,
a natural inner product is
⟨ m ∣ n ⟩ = tr ( m T ) ∗ n \brket{m}{n} = \text{tr} (m^T)^* n ⟨ m ∣ n ⟩ = tr ( m T ) ∗ n where m , n m,n m , n are 2 × 2 2\times 2 2 × 2 matrices. This clearly defines an adjoint map from ∣ n ⟩ \ket{n} ∣ n ⟩ to a linear map. An orthonormal basis is:
∣ 1 ⟩ → ( 1 0 0 0 ) ; ∣ 2 ⟩ → ( 0 1 0 0 ) ; ∣ 3 ⟩ → ( 0 0 1 0 ) ; ∣ 4 ⟩ → ( 0 0 0 1 ) \ket{1} \to \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \ ; \ \
\ket{2} \to \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\ ; \ \
\ket{3} \to \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\ ; \ \
\ket{4} \to \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} ∣1 ⟩ → ( 1 0 0 0 ) ; ∣2 ⟩ → ( 0 0 1 0 ) ; ∣3 ⟩ → ( 0 1 0 0 ) ; ∣4 ⟩ → ( 0 0 0 1 ) Consider the vector space of complex functions on the interval 0 , L 0,L 0 , L with Dirichlet boundary condittions. You can convince yourself that the basis
∣ n ⟩ → ψ n ( x ) = 2 L sin n π x L \ket{n} \to \psi_n(x) = \sqrt{\frac{2}{L}} \sin \frac{n\pi x}{L} ∣ n ⟩ → ψ n ( x ) = L 2 sin L nπ x is orthonormal with respect to the inner product (17)
The Gram-Schmidt machine ¶ Theorem : every finite-dimensional vector space or infinite dimensional vector space with a countable basis has an orthonormal basis.
Proof (partial) : Given a basis ∣ v 1 ⟩ , ∣ v 2 ⟩ , … , ∣ v d ⟩ \ket{v_1},\ket{v_2},\ldots,\ket{v_d} ∣ v 1 ⟩ , ∣ v 2 ⟩ , … , ∣ v d ⟩ , we can construct a basis iteratively. Define
∣ 1 ⟩ = ∣ v 1 ⟩ ∣ ∣ v 1 ∣ ∣ ∣ 2 ⟩ = ∣ v 2 ⟩ − ⟨ 1 ∣ v 2 ⟩ ∣ 1 ⟩ ∣ ∣ v 2 ∣ ∣ 2 − ∣ ⟨ 1 ∣ v 2 ⟩ ∣ 2 ∣ k ⟩ = ∣ v k ⟩ − ∑ n = 0 k − 1 ∣ n ⟩ ⟨ n ∣ v k ⟩ ∣ ∣ v k ∣ ∣ 2 = ∑ n = 1 k − 1 ∣ ⟨ v k ∣ n ⟩ ∣ 2 \begin{align}
\ket{1} & = \frac{\ket{v_1}}{||v_1||}\\
\ket{2} & = \frac{\ket{v_2} - \brket{1}{v_2}\ket{1}}{\sqrt{||v_2||^2 - |\brket{1}{v_2}|^2}}\\
\ket{k} & = \frac{\ket{v_k} - \sum_{n = 0}^{k-1} \ket{n}\brket{n}{v_k}}{\sqrt{||v_k||^2 = \sum_{n = 1}^{k-1} |\brket{v_k}{n}|^2}}
\end{align} ∣1 ⟩ ∣2 ⟩ ∣ k ⟩ = ∣∣ v 1 ∣∣ ∣ v 1 ⟩ = ∣∣ v 2 ∣ ∣ 2 − ∣ ⟨ 1∣ v 2 ⟩ ∣ 2 ∣ v 2 ⟩ − ⟨ 1∣ v 2 ⟩ ∣1 ⟩ = ∣∣ v k ∣ ∣ 2 = ∑ n = 1 k − 1 ∣ ⟨ v k ∣ n ⟩ ∣ 2 ∣ v k ⟩ − ∑ n = 0 k − 1 ∣ n ⟩ ⟨ n ∣ v k ⟩ Matrix elements of operators ¶ Since ∣ i ⟩ \ket{i} ∣ i ⟩ is a basis, we can write the action of operators in this basis: A ∣ j ⟩ = A i j ∣ i ⟩ A\ket{j} = A_{ij}\ket{i} A ∣ j ⟩ = A ij ∣ i ⟩ . As notation, we will sometimes write
A = ∣ i ⟩ A i j ⟨ j ∣ A = \ket{i} A_{ij} \bra{j} A = ∣ i ⟩ A ij ⟨ j ∣ We understand this to mean
A ∣ v ⟩ = ∑ i , j ∣ i ⟩ A i j ⟨ j ∣ v ⟩ = ∑ i , j A i j v j ∣ i ⟩ A\ket{v} = \sum_{i,j} \ket{i} A_{ij} \brket{j}{v} = \sum_{i,j}A_{ij} v_j \ket{i} A ∣ v ⟩ = i , j ∑ ∣ i ⟩ A ij ⟨ j ∣ v ⟩ = i , j ∑ A ij v j ∣ i ⟩ where ∣ v ⟩ = ∑ i v i ∣ i ⟩ \ket{v} = \sum_i v_i \ket{i} ∣ v ⟩ = ∑ i v i ∣ i ⟩ , and for dual vectors ⟨ v ∣ = ∑ i ⟨ i ∣ v i ∗ \bra{v} = \sum_i \bra{i} v_i^* ⟨ v ∣ = ∑ i ⟨ i ∣ v i ∗ ,
⟨ v ∣ A = ∑ i , k ⟨ i ∣ v k ∗ A k i \bra{v} A = \sum_{i,k} \bra{i} v^*_k A_{ki} ⟨ v ∣ A = i , k ∑ ⟨ i ∣ v k ∗ A ki Thus
⟨ v ∣ A ∣ w ⟩ = ∑ i , j v i ∗ A i j w j \bra{v} A \ket{w} = \sum_{i,j} v^*_i A_{ij} w_j ⟨ v ∣ A ∣ w ⟩ = i , j ∑ v i ∗ A ij w j A particularly important example is the identity operator 1 \bf{1} 1 for which 1 i j = δ i j \bf{1}_{ij} = \delta_{ij} 1 ij = δ ij . This can be represented as above by:
1 = ∑ i ∣ i ⟩ ⟨ i ∣ {\bf 1} = \sum_i \ket{i}\bra{i} 1 = i ∑ ∣ i ⟩ ⟨ i ∣ for any orthonormal basis. This is called a resolution of the identity , associated to a given basis.
In this basis, an important operator on A A A is the transpose . That is given a linear operator A A A , we can define the transpose A T A^T A T via its matrix elements
( A T ) i j = A j i (A^T)_{ij} = A_{ji} ( A T ) ij = A ji In particular, we can write
⟨ v ∣ A = ⟨ i ∣ v k ∗ A k i = ⟨ i ∣ ( A T ) i k v k ∗ \bra{v}A = \bra{i} v^*_k A_{ki} = \bra{i} (A^T)_{ik} v^*_k ⟨ v ∣ A = ⟨ i ∣ v k ∗ A ki = ⟨ i ∣ ( A T ) ik v k ∗ Adjoints of operators ¶ The vector A ∣ v ⟩ ≡ ∣ A v ⟩ = A l k v k ∣ l ⟩ A\ket{v} \equiv \ket{Av} = A_{lk} v_k \ket{l} A ∣ v ⟩ ≡ ∣ A v ⟩ = A l k v k ∣ l ⟩ has a natural adjoint
A : A ∣ v ⟩ → ⟨ l ∣ v k ∗ A l k ∗ = ⟨ l ∣ v k ∗ ( A T ) k l ∗ ≡ ⟨ v ∣ A † {\cal A} : A\ket{v} \to \bra{l} v_k^* A_{lk}^* = \bra{l} v_k^* (A^T)^*_{kl} \equiv \bra{v} A^{\dagger} A : A ∣ v ⟩ → ⟨ l ∣ v k ∗ A l k ∗ = ⟨ l ∣ v k ∗ ( A T ) k l ∗ ≡ ⟨ v ∣ A † which defines the Hermitian conjugate A † A^{\dagger} A † . We can either define it as A : A ∣ v ⟩ → ⟨ a ∣ A † {\cal A}: A\ket{v} \to \bra{a} A^{\dagger} A : A ∣ v ⟩ → ⟨ a ∣ A † or via its matrix elements in an orthonormal basis,
A i j † = ( A T ) i j ∗ = A j i ∗ A^{\dagger}_{ij} = (A^T)^*_{ij} = A^*_{ji} A ij † = ( A T ) ij ∗ = A ji ∗ Hermitian and unitary operators ¶ Definition . A Hermitian operator is an operator A = A † A = A^{\dagger} A = A † .
Note that this does not mean the operator has real matrix elements. The following operator on C 2 \CC^2 C 2 is Hermitian:
σ y = ( 0 i − i 0 ) \sigma_y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} σ y = ( 0 − i i 0 ) Definition . A Unitary operator is an operator U U U such that U † = U − 1 U^{\dagger} = U^{-1} U † = U − 1 .
An important property of this operator is that it is norm-preserving :
∣ ∣ U ∣ v ⟩ ∣ ∣ 2 = ⟨ v ∣ U † U ∣ v ⟩ = ⟨ v ∣ U − 1 U ∣ v ⟩ = ⟨ v ∣ v ⟩ = ∣ ∣ v ∣ ∣ 2 || U\ket{v}||^2 = \bra{v} U^{\dagger} U \ket{v} = \bra{v} U^{-1} U \ket{v} = \brket{v}{v} = ||v||^2 ∣∣ U ∣ v ⟩ ∣ ∣ 2 = ⟨ v ∣ U † U ∣ v ⟩ = ⟨ v ∣ U − 1 U ∣ v ⟩ = ⟨ v ∣ v ⟩ = ∣∣ v ∣ ∣ 2 An example of a unitary operator acting on C 2 \CC^2 C 2 :
U = ( cos θ sin θ e i ϕ − sin θ e − i ϕ cos θ ) U = \begin{pmatrix} \cos\theta & \sin\theta e^{i\phi} \\ - \sin\theta e^{-i\phi} & \cos\theta \end{pmatrix} U = ( cos θ − sin θ e − i ϕ sin θ e i ϕ cos θ ) As we will discuss, this implements rotations on the spin components of a spin-1 2 \half 2 1 system.
Two nontrivial Hermitian examples for L 2 ( R ) L^2(\CR) L 2 ( R ) :
⟨ χ ∣ x ^ k e t ψ = ∫ d x χ ∗ ( x ψ ( x ) ) = ∫ d x ( x χ ) ∗ ψ = ⟨ χ ∣ x ψ ⟩ = ⟨ x χ ∣ ψ ⟩ \begin{align}
\bra{\chi} \hat{x} ket{\psi} & = \int dx \chi^* (x \psi(x)) = \int dx (x\chi)^* \psi \\
& = \brket{\chi}{x\psi} = \brket{x\chi}{\psi}
\end{align} ⟨ χ ∣ x ^ k e t ψ = ∫ d x χ ∗ ( x ψ ( x )) = ∫ d x ( x χ ) ∗ ψ = ⟨ χ ∣ x ψ ⟩ = ⟨ x χ ∣ ψ ⟩ as expected for a Hermitian operator.
⟨ χ ∣ p ^ ∣ ψ ⟩ = ∫ − ∞ ∞ χ ∗ ( − i ℏ ) ∂ ψ ∂ x = ( − i ℏ ) ∫ − ∞ ∞ d x ∂ ∂ x ( χ ∗ ψ ) + i ℏ ∫ d x ∂ χ ∗ ∂ x ψ = − i ℏ χ ∗ ψ ∣ − ∞ ∞ + ∫ − ∞ ∞ d x ( − i ℏ ∂ χ ∂ x ) ∗ ψ = ⟨ χ ∣ p ^ † ∣ ψ ⟩ \begin{align}
\bra{\chi} {\hat p}\ket{\psi} & = \int_{-\infty}^{\infty} \chi^* (-i\hbar) \frac{\del \psi}{\del x}\\
& = (-i \hbar) \int_{-\infty}^{\infty} dx \frac{\del}{\del x} (\chi^* \psi) + i \hbar \int dx \frac{\del \chi^*}{\del x} \psi \\
& = - i \hbar \chi^* \psi \Big|_{-\infty}^{\infty} + \int_{-\infty}^{\infty} dx\left(-i\hbar \frac{\del \chi}{\del x}\right)^*\psi\\
& = \bra{\chi}{\hat p}^{\dagger} \ket{\psi}
\end{align} ⟨ χ ∣ p ^ ∣ ψ ⟩ = ∫ − ∞ ∞ χ ∗ ( − i ℏ ) ∂ x ∂ ψ = ( − i ℏ ) ∫ − ∞ ∞ d x ∂ x ∂ ( χ ∗ ψ ) + i ℏ ∫ d x ∂ x ∂ χ ∗ ψ = − i ℏ χ ∗ ψ ∣ ∣ − ∞ ∞ + ∫ − ∞ ∞ d x ( − i ℏ ∂ x ∂ χ ) ∗ ψ = ⟨ χ ∣ p ^ † ∣ ψ ⟩ The second line follows from integration by parts, and the boundary terms vanish because ψ \psi ψ is square integrable. In other words for every ∣ ψ ⟩ , ∣ χ ⟩ \ket{\psi},\ket{\chi} ∣ ψ ⟩ , ∣ χ ⟩ , ⟨ χ ∣ p ^ ∣ ψ ⟩ = ⟨ χ ∣ p ^ † ∣ ψ ⟩ \bra{\chi} {\hat p} \ket{\psi} = \bra{\chi} {\hat p}^{\dagger} \ket{\psi} ⟨ χ ∣ p ^ ∣ ψ ⟩ = ⟨ χ ∣ p ^ † ∣ ψ ⟩ . From this we can deduce that p ^ = p ^ † {\hat p} = {\hat p}^{\dagger} p ^ = p ^ † .
The same argument follows for the case of complex functions with periodic boundary conditions. For Dirichlet boundary conditions, p ^ {\hat p} p ^ fails to be an operator on teh Hilbert space, as the derivative of a function with Dirichlet boundary conditions does not in general satisfy Dirichlet boundary conditions. (Similarly for Neumann boundary conditions).