The free nonrelativistic particle
We begin by considering the “free” nonrelativistic particle in d d d dimensions -- that is, a particle with no force acting on it. The Hamiltonian is
H = p ⃗ 2 2 m H = \frac{{\vec p}^2}{2m} H = 2 m p 2 where m m m is the particle mass. The time-dependent Schroedinger equation is
− ℏ 2 2 m ψ ( x ⃗ , t ) = i ℏ ∂ ∂ t ψ ( x ⃗ , t ) - \frac{\hbar^2}{2m} \psi({\vec x}, t) = i \hbar \frac{\del}{\del t} \psi({\vec x}, t) − 2 m ℏ 2 ψ ( x , t ) = i ℏ ∂ t ∂ ψ ( x , t ) The solutions to the time-independent Schrodinger equation are clearly
ψ E ( x ⃗ ) = 1 ( 2 π ℏ ) d / 2 e i p ⃗ ⋅ x ⃗ / ℏ \psi_E({\vec x}) = \frac{1}{(2\pi\hbar)^{d/2}} e^{i {\vec p}\cdot{\vec x}/\hbar} ψ E ( x ) = ( 2 π ℏ ) d /2 1 e i p ⋅ x /ℏ which has energy E = p ⃗ 2 2 m E = \frac{{\vec p}^2}{2m} E = 2 m p 2 . In this case the energy eigenstates are not quite in the Hilbert space. But we will ignore this complication.
We can treat the time-dependent equation as an initial value problem. At time t = t 0 t = t_0 t = t 0 , we rpescribe a wavefunction ψ ( x ⃗ , t 0 ) \psi({\vec x}, t_0) ψ ( x , t 0 ) . This can be expressed in a Fourier integral:
ψ ( x , t 0 ) = ∫ d d p ( 2 π ℏ ) d / 2 e i p ⃗ ⋅ x ⃗ / ℏ ψ ~ ( p ⃗ ) \psi(x,t_0) = \int \frac{d^d p}{(2\pi \hbar)^{d/2}} e^{ i {\vec p}\cdot{\vec x}/\hbar}
{\tilde \psi}({\vec p}) ψ ( x , t 0 ) = ∫ ( 2 π ℏ ) d /2 d d p e i p ⋅ x /ℏ ψ ~ ( p ) Since an energy eigenstate evolves simply as
ψ E ( x ⃗ , t ) = e − i E ( t = t 0 ) / ℏ ψ E ( x ⃗ , t 0 ) \psi_E({\vec x},t) = e^{-i E(t = t_0)/\hbar} \psi_E({\vec x}, t_0) ψ E ( x , t ) = e − i E ( t = t 0 ) /ℏ ψ E ( x , t 0 ) then the full state ψ \psi ψ evolves as
ψ ( x , t ) = ∫ d d p ( 2 π ℏ ) d / 2 e − p ⃗ ⋅ x ⃗ / ℏ e − i p ⃗ 2 2 m t ψ ~ ( p ⃗ ) \psi(x,t) = \int \frac{d^d p}{(2\pi \hbar)^{d/2}} e^{- {\vec p}\cdot{\vec x}/\hbar} e^{- i \frac{{\vec p}^2}{2m} t} {\tilde \psi}({\vec p}) ψ ( x , t ) = ∫ ( 2 π ℏ ) d /2 d d p e − p ⋅ x /ℏ e − i 2 m p 2 t ψ ~ ( p ) An equivalent strategy is to start with the formula
ψ ( x ⃗ , t ) = ⟨ x ∣ U ( t , t 0 ) ∣ ψ ( t 0 ) ⟩ = ∫ d d y ⟨ x ∣ U ( t , t 0 ) ∣ y ⟩ ⟨ y ∣ ∣ ψ ( t 0 ) ⟩ ≡ ∫ d d y G 0 ( x , t ; y , t 0 ) ψ ( y , t 0 ) \begin{align}
\psi({\vec x},t) & = \bra{x}U(t,t_0)\ket{\psi(t_0)} \\
& = \int d^d y \bra{x}U(t,t_0)\ket{y}\bra{y}\ket{\psi(t_0)}\\
& \equiv \int d^d y G_0(x,t; y,t_0) \psi(y,t_0)
\end{align} ψ ( x , t ) = ⟨ x ∣ U ( t , t 0 ) ∣ ψ ( t 0 )⟩ = ∫ d d y ⟨ x ∣ U ( t , t 0 ) ∣ y ⟩ ⟨ y ∣∣ ψ ( t 0 )⟩ ≡ ∫ d d y G 0 ( x , t ; y , t 0 ) ψ ( y , t 0 ) where G 0 ( x , t ; y m t 0 ) = ⟨ x ∣ U ( t , t 0 ) ∣ y ⟩ G_0(x,t;ymt_0) = \bra{x} U(t,t_0) \ket{y} G 0 ( x , t ; y m t 0 ) = ⟨ x ∣ U ( t , t 0 ) ∣ y ⟩ and U ( t , t 0 ) = e − i H ( t − t 0 ) / ℏ U(t,t_0) = e^{-i H (t-t_0)/\hbar} U ( t , t 0 ) = e − i H ( t − t 0 ) /ℏ . G 0 G_0 G 0 is called the propagator or Green function. With some work you can show that
− ℏ 2 2 m ∇ ⃗ 2 G 0 = i ℏ ∂ ∂ t G 0 , - \frac{\hbar^2}{2m} {\vec\nabla}^2 G_0 = i \hbar \frac{\del}{\del t} G_0\ , − 2 m ℏ 2 ∇ 2 G 0 = i ℏ ∂ t ∂ G 0 , that is, it solves the Schroedinger equation, and that
G 0 ( x , t ; y , t 0 ) → t → t 0 δ d ( x ⃗ − y ⃗ ) G_0(x,t;y,t_0) \xrightarrow[t \to t_0]{} \delta^d({\vec x} - {\vec y}) G 0 ( x , t ; y , t 0 ) t → t 0 δ d ( x − y ) Given G 0 G_0 G 0 you can find a solution for any initial value, by doing the integral in (7) .
od find G 0 G_0 G 0 we insert resolutions of the identity 1 = ∫ d d p ∣ p ⟩ ⟨ p ∣ {\bf 1} = \int d^d p \ket{p}\bra{p} 1 = ∫ d d p ∣ p ⟩ ⟨ p ∣ and use ⟨ x ∣ p ⟩ = 1 ( 2 π ℏ ) d / 2 e i p ⃗ ⋅ x ⃗ / ℏ \brket{x}{p} = \frac{1}{(2\pi \hbar)^{d/2}} e^{i{\vec p}\cdot{\vec x}/\hbar} ⟨ x ∣ p ⟩ = ( 2 π ℏ ) d /2 1 e i p ⋅ x /ℏ :
G 0 ( x , t ; y , t 0 ) = ∫ d d p ∫ d d p ′ ⟨ x ∣ p ⟩ ⟨ p ∣ U ( t , t 0 ) ∣ p ′ ⟩ ⟨ p ′ ∣ y ⟩ = ∫ d 3 p d 3 p ′ ( 2 π ℏ ) d e i p ⃗ ⋅ x ⃗ / ℏ − i p ⃗ ′ ⋅ y ⃗ / ℏ e − i p ⃗ 2 2 m ℏ ( t − t 0 ) ⟨ p ∣ p ′ ⟩ = ∫ d d p ( 2 π ℏ ) d e i p ⃗ ⋅ ( x ⃗ − y ⃗ ) / ℏ − i p ⃗ 2 2 m ℏ t \begin{align}
G_0(x,t;y,t_0) & = \int d^d p \int d^d p' \brket{x}{p} \bra{p} U(t,t_0) \ket{p'}\brket{p'}{y}\\
& = \int\frac{d^3 p d^3 p'}{(2\pi \hbar)^d} e^{i{\vec p}\cdot{\vec x}/\hbar - i {\vec p}'\cdot{\vec y}/\hbar} e^{-i\frac{{\vec p}^2}{2m\hbar} (t - t_0)} \brket{p}{p'}\\
& = \int \frac{d^d p}{(2\pi \hbar)^d} e^{i {\vec p}\cdot({\vec x} - {\vec y})/\hbar - i \frac{{\vec p}^2}{2m\hbar} t}
\end{align} G 0 ( x , t ; y , t 0 ) = ∫ d d p ∫ d d p ′ ⟨ x ∣ p ⟩ ⟨ p ∣ U ( t , t 0 ) ∣ p ′ ⟩ ⟨ p ′ ∣ y ⟩ = ∫ ( 2 π ℏ ) d d 3 p d 3 p ′ e i p ⋅ x /ℏ − i p ′ ⋅ y /ℏ e − i 2 m ℏ p 2 ( t − t 0 ) ⟨ p ∣ p ′ ⟩ = ∫ ( 2 π ℏ ) d d d p e i p ⋅ ( x − y ) /ℏ − i 2 m ℏ p 2 t Now this is a Gaussian integral. The argument is pure imaginart, but if we let t → t − i ϵ t \to t - i\eps t → t − i ϵ , then the integrand will die off exponentially as ∼ e − ϵ p 2 t / ( 2 m ℏ ) \sim e^{-\eps p^2 t/(2m\hbar)} ∼ e − ϵ p 2 t / ( 2 m ℏ ) for large p 2 p^2 p 2 . We can then use the standard formulae for Gaussian integrals
∫ − ∞ ∞ d q e − a q 2 = π a \int_{-\infty}^{\infty} d q e^{-a q^2} = \sqrt{\frac{\pi}{a}} ∫ − ∞ ∞ d q e − a q 2 = a π To do the integral above we need to complete the square. Writing the argument of the exponential as (setting t 0 = 0 t_0 = 0 t 0 = 0 ; this is just a choice of coordinates)
− i t 2 m ℏ ( p 2 − 2 m t p ⃗ ⋅ ( x ⃗ − y ⃗ ) ) = − i t 2 m ℏ ( p 2 − 2 m t p ⃗ ⋅ ( x ⃗ − y ⃗ ) + m 2 t 2 ( x − y ) 2 ) + i m ℏ t ( x − y ) 2 = − i t 2 m ℏ ( p − m t ( x − y ) ) 2 + i m ℏ t ( x − y ) 2 \begin{align}
& \frac{- i t}{2m\hbar}\left(p^2 - \frac{2m}{t}{\vec p}\cdot({\vec x - \vec y})\right)\\
& \ \ = - \frac{i t}{2m\hbar}\left(p^2 - \frac{2m}{t}{\vec p}\cdot({\vec x - \vec y}) + \frac{m^2}{t^2}(x - y)^2\right) + \frac{i m}{\hbar t}(x - y)^2\\
& \ \ = - \frac{i t}{2m\hbar}(p - \frac{m}{t}(x - y))^2 + \frac{i m}{\hbar t}(x - y)^2
\end{align} 2 m ℏ − i t ( p 2 − t 2 m p ⋅ ( x − y ) ) = − 2 m ℏ i t ( p 2 − t 2 m p ⋅ ( x − y ) + t 2 m 2 ( x − y ) 2 ) + ℏ t im ( x − y ) 2 = − 2 m ℏ i t ( p − t m ( x − y ) ) 2 + ℏ t im ( x − y ) 2 We can shift the origin of integration by setting p ⃗ → p ⃗ + m t ( x ⃗ − y ⃗ ) {\vec p} \to {\vec p} + \frac{m}{t}({\vec x} - {\vec y}) p → p + t m ( x − y ) and performing the Gaussian integrals. The result, when the dust settles, is
G 0 ( x , t ; y , t 0 ) = ( m 2 π i ℏ ( t − t 0 ) ) d / 2 e m ( x ⃗ − y ⃗ ) 2 2 i ℏ t G_0(x,t; y,t_0) = \left(\frac{m}{2\pi i \hbar (t - t_0)}\right)^{d/2} e^{\frac{m({\vec x} - {\vec y})^2}{2i \hbar t}} G 0 ( x , t ; y , t 0 ) = ( 2 πi ℏ ( t − t 0 ) m ) d /2 e 2 i ℏ t m ( x − y ) 2 This is an exponential which oscillates more slowly at x ⃗ = y ⃗ {\vec x} = {\vec y} x = y and more quickly as we go off to infinity. The width of the slowly oscillating region increases as a square root of t = t 0 t = t_0 t = t 0 ; this is the origin of the spreading of the wavefunction. To get some intuition, note that if we set t = − i τ t = - i \tau t = − i τ , the Schroedinger equation becomes
ℏ ∂ ∂ τ ψ = ℏ 2 2 m ∇ 2 ψ ⇒ ∂ τ ψ = D ∇ 2 ψ \hbar \frac{\del}{\del \tau} \psi = \frac{\hbar^2}{2m} \nabla^2 \psi \Rightarrow \del_{\tau}\psi = D \nabla^2 \psi ℏ ∂ τ ∂ ψ = 2 m ℏ 2 ∇ 2 ψ ⇒ ∂ τ ψ = D ∇ 2 ψ where D = ℏ 2 m D = \frac{\hbar}{2m} D = 2 m ℏ . This latter equation is the diffusion equation (a special case of the Fokker-Planck equation). The interpretation is different: ψ \psi ψ is a density or a probability distribution (rather than a complex amplitude you square to get thr probability). But it turns out you can get some mileage from the realization that there is a formal relation (in many cases) between diffusion problems (and their underlying stochastic dynamics) and quantum problems.