Skip to article frontmatterSkip to article content
Site not loading correctly?

This may be due to an incorrect BASE_URL configuration. See the MyST Documentation for reference.

The free nonrelativistic particle

We begin by considering the “free” nonrelativistic particle in dd dimensions -- that is, a particle with no force acting on it. The Hamiltonian is

H=p22mH = \frac{{\vec p}^2}{2m}

where mm is the particle mass. The time-dependent Schroedinger equation is

22mψ(x,t)=itψ(x,t)- \frac{\hbar^2}{2m} \psi({\vec x}, t) = i \hbar \frac{\del}{\del t} \psi({\vec x}, t)

The solutions to the time-independent Schrodinger equation are clearly

ψE(x)=1(2π)d/2eipx/\psi_E({\vec x}) = \frac{1}{(2\pi\hbar)^{d/2}} e^{i {\vec p}\cdot{\vec x}/\hbar}

which has energy E=p22mE = \frac{{\vec p}^2}{2m}. In this case the energy eigenstates are not quite in the Hilbert space. But we will ignore this complication.

We can treat the time-dependent equation as an initial value problem. At time t=t0t = t_0, we rpescribe a wavefunction ψ(x,t0)\psi({\vec x}, t_0). This can be expressed in a Fourier integral:

ψ(x,t0)=ddp(2π)d/2eipx/ψ~(p)\psi(x,t_0) = \int \frac{d^d p}{(2\pi \hbar)^{d/2}} e^{ i {\vec p}\cdot{\vec x}/\hbar} {\tilde \psi}({\vec p})

Since an energy eigenstate evolves simply as

ψE(x,t)=eiE(t=t0)/ψE(x,t0)\psi_E({\vec x},t) = e^{-i E(t = t_0)/\hbar} \psi_E({\vec x}, t_0)

then the full state ψ\psi evolves as

ψ(x,t)=ddp(2π)d/2epx/eip22mtψ~(p)\psi(x,t) = \int \frac{d^d p}{(2\pi \hbar)^{d/2}} e^{- {\vec p}\cdot{\vec x}/\hbar} e^{- i \frac{{\vec p}^2}{2m} t} {\tilde \psi}({\vec p})

An equivalent strategy is to start with the formula

ψ(x,t)=xU(t,t0)ψ(t0)=ddyxU(t,t0)yyψ(t0)ddyG0(x,t;y,t0)ψ(y,t0)\begin{align} \psi({\vec x},t) & = \bra{x}U(t,t_0)\ket{\psi(t_0)} \\ & = \int d^d y \bra{x}U(t,t_0)\ket{y}\bra{y}\ket{\psi(t_0)}\\ & \equiv \int d^d y G_0(x,t; y,t_0) \psi(y,t_0) \end{align}

where G0(x,t;ymt0)=xU(t,t0)yG_0(x,t;ymt_0) = \bra{x} U(t,t_0) \ket{y} and U(t,t0)=eiH(tt0)/U(t,t_0) = e^{-i H (t-t_0)/\hbar}. G0G_0 is called the propagator or Green function. With some work you can show that

22m2G0=itG0 ,- \frac{\hbar^2}{2m} {\vec\nabla}^2 G_0 = i \hbar \frac{\del}{\del t} G_0\ ,

that is, it solves the Schroedinger equation, and that

G0(x,t;y,t0)tt0δd(xy)G_0(x,t;y,t_0) \xrightarrow[t \to t_0]{} \delta^d({\vec x} - {\vec y})

Given G0G_0 you can find a solution for any initial value, by doing the integral in (7).

od find G0G_0 we insert resolutions of the identity 1=ddppp{\bf 1} = \int d^d p \ket{p}\bra{p} and use xp=1(2π)d/2eipx/\brket{x}{p} = \frac{1}{(2\pi \hbar)^{d/2}} e^{i{\vec p}\cdot{\vec x}/\hbar}:

G0(x,t;y,t0)=ddpddpxppU(t,t0)ppy=d3pd3p(2π)deipx/ipy/eip22m(tt0)pp=ddp(2π)deip(xy)/ip22mt\begin{align} G_0(x,t;y,t_0) & = \int d^d p \int d^d p' \brket{x}{p} \bra{p} U(t,t_0) \ket{p'}\brket{p'}{y}\\ & = \int\frac{d^3 p d^3 p'}{(2\pi \hbar)^d} e^{i{\vec p}\cdot{\vec x}/\hbar - i {\vec p}'\cdot{\vec y}/\hbar} e^{-i\frac{{\vec p}^2}{2m\hbar} (t - t_0)} \brket{p}{p'}\\ & = \int \frac{d^d p}{(2\pi \hbar)^d} e^{i {\vec p}\cdot({\vec x} - {\vec y})/\hbar - i \frac{{\vec p}^2}{2m\hbar} t} \end{align}

Now this is a Gaussian integral. The argument is pure imaginart, but if we let ttiϵt \to t - i\eps, then the integrand will die off exponentially as eϵp2t/(2m)\sim e^{-\eps p^2 t/(2m\hbar)} for large p2p^2. We can then use the standard formulae for Gaussian integrals

dqeaq2=πa\int_{-\infty}^{\infty} d q e^{-a q^2} = \sqrt{\frac{\pi}{a}}

To do the integral above we need to complete the square. Writing the argument of the exponential as (setting t0=0t_0 = 0; this is just a choice of coordinates)

it2m(p22mtp(xy))  =it2m(p22mtp(xy)+m2t2(xy)2)+imt(xy)2  =it2m(pmt(xy))2+imt(xy)2\begin{align} & \frac{- i t}{2m\hbar}\left(p^2 - \frac{2m}{t}{\vec p}\cdot({\vec x - \vec y})\right)\\ & \ \ = - \frac{i t}{2m\hbar}\left(p^2 - \frac{2m}{t}{\vec p}\cdot({\vec x - \vec y}) + \frac{m^2}{t^2}(x - y)^2\right) + \frac{i m}{\hbar t}(x - y)^2\\ & \ \ = - \frac{i t}{2m\hbar}(p - \frac{m}{t}(x - y))^2 + \frac{i m}{\hbar t}(x - y)^2 \end{align}

We can shift the origin of integration by setting pp+mt(xy){\vec p} \to {\vec p} + \frac{m}{t}({\vec x} - {\vec y}) and performing the Gaussian integrals. The result, when the dust settles, is

G0(x,t;y,t0)=(m2πi(tt0))d/2em(xy)22itG_0(x,t; y,t_0) = \left(\frac{m}{2\pi i \hbar (t - t_0)}\right)^{d/2} e^{\frac{m({\vec x} - {\vec y})^2}{2i \hbar t}}

This is an exponential which oscillates more slowly at x=y{\vec x} = {\vec y} and more quickly as we go off to infinity. The width of the slowly oscillating region increases as a square root of t=t0t = t_0; this is the origin of the spreading of the wavefunction. To get some intuition, note that if we set t=iτt = - i \tau, the Schroedinger equation becomes

τψ=22m2ψτψ=D2ψ\hbar \frac{\del}{\del \tau} \psi = \frac{\hbar^2}{2m} \nabla^2 \psi \Rightarrow \del_{\tau}\psi = D \nabla^2 \psi

where D=2mD = \frac{\hbar}{2m}. This latter equation is the diffusion equation (a special case of the Fokker-Planck equation). The interpretation is different: ψ\psi is a density or a probability distribution (rather than a complex amplitude you square to get thr probability). But it turns out you can get some mileage from the realization that there is a formal relation (in many cases) between diffusion problems (and their underlying stochastic dynamics) and quantum problems.